Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Haematologica ; 108(7): 1817-1826, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36727396

ABSTRACT

Donor clonal hematopoiesis may be transferred to the recipient through allogeneic hematopoietic stem cell transplantation (HSCT), but the potential for adverse long-term impact on transplant outcomes remains unknown. A total of 744 samples from 372 recipients who received HSCT and the corresponding donors were included. Bar-coded error-corrected sequencing using a modified molecular inversion probe capture protocol was performed, which targeted 33 genes covering mutations involved in clonal hematopoiesis with indeterminate potential (CHIP) and other acute myeloid leukemia-related mutations. A total of 30 mutations were detected from 25 donors (6.7%): the most frequently mutated gene was TET2 (n=7, 28%), followed by DNMT3A (n=4, 16%), SMC3 (n=3, 12%) and SF3B1 (n=3, 12%). With a median follow-up duration of 13 years among survivors, the presence of CHIP in the donor was not associated with recipient overall survival (P=0.969), relapse incidence (P=0.600) or non-relapse mortality (P=0.570). Donor CHIP did not impair neutrophil (P=0.460) or platelet (P=0.250) engraftment, the rates of acute (P=0.490), or chronic graft-versus-host disease (P=0.220). No significant difference was noted for secondary malignancy following HSCT between the two groups. The present study suggests that the presence of CHIP in allogeneic stem donors does not adversely affect transplant outcomes after HSCT. Accordingly, further study is warranted to reach a clearer conclusion on whether molecular profiling to determine the presence of CHIP mutations is necessary for the pretransplant evaluation of donors prior to stem cell donation.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Clonal Hematopoiesis , Follow-Up Studies , Transplantation, Homologous/adverse effects , Hematopoietic Stem Cell Transplantation/methods
2.
Int J Mol Sci ; 23(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35682839

ABSTRACT

Whole-genome amplification is a crucial first step in nearly all single-cell genomic analyses, with the following steps focused on its products. Bias and variance caused by the whole-genome amplification process add numerous challenges to the world of single-cell genomics. Short tandem repeats are sensitive genomic markers used widely in population genetics, forensics, and retrospective lineage tracing. A previous evaluation of common whole-genome amplification targeting ~1000 non-autosomal short tandem repeat loci is extended here to ~12,000 loci across the entire genome via duplex molecular inversion probes. Other than its improved scale and reduced noise, this system detects an abundance of heterogeneous short tandem repeat loci, allowing the allelic balance to be reported. We show here that while the best overall yield is obtained using RepliG-SC, the maximum uniformity between alleles and reproducibility across cells are maximized by Ampli1, rendering it the best candidate for the comparative heterozygous analysis of single-cell genomes.


Subject(s)
Genetics, Population , Microsatellite Repeats , Alleles , Microsatellite Repeats/genetics , Reproducibility of Results , Retrospective Studies
3.
NAR Genom Bioinform ; 4(1): lqab125, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35156021

ABSTRACT

Deep targeted sequencing technologies are still not widely used in clinical practice due to the complexity of the methods and their cost. The Molecular Inversion Probes (MIP) technology is cost effective and scalable in the number of targets, however, suffers from low overall performance especially in GC rich regions. In order to improve the MIP performance, we sequenced a large cohort of healthy individuals (n = 4417), with a panel of 616 MIPs, at high depth in duplicates. To improve the previous state-of-the-art statistical model for low variant allele frequency, we selected 4635 potentially positive variants and validated them using amplicon sequencing. Using machine learning prediction tools, we significantly improved precision of 10-56.25% (P < 0.0004) to detect variants with VAF > 0.005. We further developed biochemically modified MIP protocol and improved its turn-around-time to ∼4 h. Our new biochemistry significantly improved uniformity, GC-Rich regions coverage, and enabled 95% on target reads in a large MIP panel of 8349 genomic targets. Overall, we demonstrate an enhancement of the MIP targeted sequencing approach in both detection of low frequency variants and in other key parameters, paving its way to become an ultrafast cost-effective research and clinical diagnostic tool.

4.
Sci Rep ; 11(1): 17171, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34433869

ABSTRACT

Advances in whole genome amplification (WGA) techniques enable understanding of the genomic sequence at a single cell level. Demand for single cell dedicated WGA kits (scWGA) has led to the development of several commercial kit. To this point, no robust comparison of all available kits was performed. Here, we benchmark an economical assay, comparing all commercially available scWGA kits. Our comparison is based on targeted sequencing of thousands of genomic loci, including highly mutable regions, from a large cohort of human single cells. Using this approach we have demonstrated the superiority of Ampli1 in genome coverage and of RepliG in reduced error rate. In summary, we show that no single kit is optimal across all categories, highlighting the need for a dedicated kit selection in accordance with experimental requirements.


Subject(s)
Single-Cell Analysis/methods , Whole Genome Sequencing/methods , Cells, Cultured , Humans , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards , Sensitivity and Specificity , Single-Cell Analysis/standards , Whole Genome Sequencing/standards
5.
Cell Rep Methods ; 1(3): None, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34341783

ABSTRACT

Cell lineage analysis aims to uncover the developmental history of an organism back to its cell of origin. Recently, novel in vivo methods utilizing genome editing enabled important insights into the cell lineages of animals. In contrast, human cell lineage remains restricted to retrospective approaches, which still lack resolution and cost-efficient solutions. Here, we demonstrate a scalable platform based on short tandem repeats targeted by duplex molecular inversion probes. With this human cell lineage tracing method, we accurately reproduced a known lineage of DU145 cells and reconstructed lineages of healthy and metastatic single cells from a melanoma patient who matched the anatomical reference while adding further refinements. This platform allowed us to faithfully recapitulate lineages of developmental tissue formation in healthy cells. In summary, our lineage discovery platform can profile informative somatic mutations efficiently and provides solid lineage reconstructions even in challenging low-mutation-rate healthy single cells.


Subject(s)
Gene Editing , Microsatellite Repeats , Animals , Humans , Cell Lineage/genetics , Retrospective Studies , Mutation
6.
Nat Commun ; 12(1): 2455, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33911081

ABSTRACT

The mutational mechanisms underlying recurrent deletions in clonal hematopoiesis are not entirely clear. In the current study we inspect the genomic regions around recurrent deletions in myeloid malignancies, and identify microhomology-based signatures in CALR, ASXL1 and SRSF2 loci. We demonstrate that these deletions are the result of double stand break repair by a PARP1 dependent microhomology-mediated end joining (MMEJ) pathway. Importantly, we provide evidence that these recurrent deletions originate in pre-leukemic stem cells. While DNA polymerase theta (POLQ) is considered a key component in MMEJ repair, we provide evidence that pre-leukemic MMEJ (preL-MMEJ) deletions can be generated in POLQ knockout cells. In contrast, aphidicolin (an inhibitor of replicative polymerases and replication) treatment resulted in a significant reduction in preL-MMEJ. Altogether, our data indicate an association between POLQ independent MMEJ and clonal hematopoiesis and elucidate mutational mechanisms involved in the very first steps of leukemia evolution.


Subject(s)
Clonal Hematopoiesis/genetics , DNA End-Joining Repair/genetics , DNA-Directed DNA Polymerase/genetics , Leukemia, Myeloid/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Aphidicolin/pharmacology , Calreticulin/genetics , DNA Breaks, Double-Stranded , DNA-Directed DNA Polymerase/drug effects , Enzyme Inhibitors/pharmacology , Humans , Myeloid Progenitor Cells , Repressor Proteins/genetics , Sequence Deletion/genetics , Serine-Arginine Splicing Factors/genetics , DNA Polymerase theta
8.
Nucleic Acids Res ; 47(5): 2436-2445, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30698816

ABSTRACT

Short tandem repeats (STRs) are polymorphic genomic loci valuable for various applications such as research, diagnostics and forensics. However, their polymorphic nature also introduces noise during in vitro amplification, making them difficult to analyze. Although it is possible to overcome stutter noise by using amplification-free library preparation, such protocols are presently incompatible with single cell analysis and with targeted-enrichment protocols. To address this challenge, we have designed a method for direct measurement of in vitro noise. Using a synthetic STR sequencing library, we have calibrated a Markov model for the prediction of stutter patterns at any amplification cycle. By employing this model, we have managed to genotype accurately cases of severe amplification bias, and biallelic STR signals, and validated our model for several high-fidelity PCR enzymes. Finally, we compared this model in the context of a naïve STR genotyping strategy against the state-of-the-art on a benchmark of single cells, demonstrating superior accuracy.


Subject(s)
Genotyping Techniques/methods , High-Throughput Nucleotide Sequencing , Microsatellite Repeats/genetics , Alleles , Genotype , Humans
9.
Genome Res ; 26(11): 1588-1599, 2016 11.
Article in English | MEDLINE | ID: mdl-27558250

ABSTRACT

Advances in single-cell genomics enable commensurate improvements in methods for uncovering lineage relations among individual cells. Current sequencing-based methods for cell lineage analysis depend on low-resolution bulk analysis or rely on extensive single-cell sequencing, which is not scalable and could be biased by functional dependencies. Here we show an integrated biochemical-computational platform for generic single-cell lineage analysis that is retrospective, cost-effective, and scalable. It consists of a biochemical-computational pipeline that inputs individual cells, produces targeted single-cell sequencing data, and uses it to generate a lineage tree of the input cells. We validated the platform by applying it to cells sampled from an ex vivo grown tree and analyzed its feasibility landscape by computer simulations. We conclude that the platform may serve as a generic tool for lineage analysis and thus pave the way toward large-scale human cell lineage discovery.


Subject(s)
Cell Lineage , Sequence Analysis, DNA/methods , Single-Cell Analysis/methods , Algorithms , Cell Line, Tumor , Cells, Cultured , Humans , Male , Microfluidics/methods , Middle Aged , Sequence Analysis, DNA/economics , Sequence Analysis, DNA/standards , Single-Cell Analysis/economics , Single-Cell Analysis/standards
10.
Nat Rev Genet ; 14(9): 618-30, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23897237

ABSTRACT

The unabated progress in next-generation sequencing technologies is fostering a wave of new genomics, epigenomics, transcriptomics and proteomics technologies. These sequencing-based technologies are increasingly being targeted to individual cells, which will allow many new and longstanding questions to be addressed. For example, single-cell genomics will help to uncover cell lineage relationships; single-cell transcriptomics will supplant the coarse notion of marker-based cell types; and single-cell epigenomics and proteomics will allow the functional states of individual cells to be analysed. These technologies will become integrated within a decade or so, enabling high-throughput, multi-dimensional analyses of individual cells that will produce detailed knowledge of the cell lineage trees of higher organisms, including humans. Such studies will have important implications for both basic biological research and medicine.


Subject(s)
Genomics , High-Throughput Nucleotide Sequencing , Single-Cell Analysis , Animals , Cell Separation/methods , Epigenomics , Gene Expression Profiling , High-Throughput Nucleotide Sequencing/methods , Humans , Proteomics , Single-Cell Analysis/methods
11.
PLoS One ; 7(11): e47795, 2012.
Article in English | MEDLINE | ID: mdl-23155373

ABSTRACT

The extraordinary fidelity, sensory and regulatory capacity of natural intracellular machinery is generally confined to their endogenous environment. Nevertheless, synthetic bio-molecular components have been engineered to interface with the cellular transcription, splicing and translation machinery in vivo by embedding functional features such as promoters, introns and ribosome binding sites, respectively, into their design. Tapping and directing the power of intracellular molecular processing towards synthetic bio-molecular inputs is potentially a powerful approach, albeit limited by our ability to streamline the interface of synthetic components with the intracellular machinery in vivo. Here we show how a library of synthetic DNA devices, each bearing an input DNA sequence and a logical selection module, can be designed to direct its own probing and processing by interfacing with the bacterial DNA mismatch repair (MMR) system in vivo and selecting for the most abundant variant, regardless of its function. The device provides proof of concept for programmable, function-independent DNA selection in vivo and provides a unique example of a logical-functional interface of an engineered synthetic component with a complex endogenous cellular system. Further research into the design, construction and operation of synthetic devices in vivo may lead to other functional devices that interface with other complex cellular processes for both research and applied purposes.


Subject(s)
Base Sequence , DNA/chemistry , Gene Library , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...